Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 136
Filtrar
1.
Brain Struct Funct ; 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38240754

RESUMO

Saccade accommodation is a productive model for exploring the role of the cerebellum in behavioral plasticity. In this model, the target is moved during the saccade, gradually inducing a change in the saccade vector as the animal adapts. The climbing fiber pathway from the inferior olive provides a visual error signal generated by the superior colliculus that is believed to be crucial for cerebellar adaptation. However, the primate tecto-olivary pathway has only been explored using large injections of the central portion of the superior colliculus. To provide a more detailed picture, we have made injections of anterograde tracers into various regions of the macaque superior colliculus. As shown previously, large central injections primarily label a dense terminal field within the C subdivision at caudal end of the contralateral medial inferior olive. Several, previously unobserved, sites of sparse terminal labeling were noted: bilaterally in the dorsal cap of Kooy and ipsilaterally in the C subdivision of the medial inferior olive. Small, physiologically directed, injections into the rostral, small saccade portion of the superior colliculus produced terminal fields in the same regions of the medial inferior olive, but with decreased density. Small injections of the caudal superior colliculus, where large amplitude gaze changes are encoded, again labeled a terminal field located in the same areas. The lack of a topographic pattern within the main tecto-olivary projection suggests that either the precise vector of the visual error is not transmitted to the vermis, or that encoding of this error is via non-topographic means.

2.
Exp Brain Res ; 242(2): 295-307, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38040856

RESUMO

Primary afferents originating from the mesencephalic trigeminal nucleus provide the main source of proprioceptive information guiding mastication, and thus represent an important component of this critical function. Unlike those of other primary afferents, their cell bodies lie within the central nervous system. It is believed that this unusual central location allows them to be regulated by synaptic input. In this study, we explored the ultrastructure of macaque mesencephalic trigeminal nucleus neurons to determine the presence and nature of this synaptic input in a primate. We first confirmed the location of macaque mesencephalic trigeminal neurons by retrograde labeling from the masticatory muscles. Since the labeled neurons were by far the largest cells located at the edge of the periaqueductal gray, we could undertake sampling for electron microscopy based on soma size. Ultrastructurally, mesencephalic trigeminal neurons had very large somata with euchromatic nuclei that sometimes displayed deeply indented nuclear membranes. Terminal profiles with varied vesicle characteristics and synaptic density thicknesses were found in contact with either their somatic plasma membranes or somatic spines. However, in contradistinction to other, much smaller, somata in the region, the plasma membranes of the mesencephalic trigeminal somata had only a few synaptic contacts. They did extend numerous somatic spines of various lengths into the neuropil, but most of these also lacked synaptic contact. The observed ultrastructural organization indicates that macaque trigeminal mesencephalic neurons do receive synaptic contacts, but despite their central location, they only avail themselves of very limited input.


Assuntos
Macaca , Núcleos do Trigêmeo , Animais , Neurônios/fisiologia , Mesencéfalo/fisiologia , Tegmento Mesencefálico
3.
eNeuro ; 10(9)2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37596048

RESUMO

When movements become inaccurate, the resultant error induces motor adaptation to improve accuracy. This error-based motor learning is regarded as a cerebellar function. However, the influence of the other brain areas on adaptation is poorly understood. During saccade adaptation, a type of error-based motor learning, the superior colliculus (SC) sends a postsaccadic error signal to the cerebellum to drive adaptation. Since the SC is directly inhibited by the substantia nigra pars reticulata (SNr), we hypothesized that the SNr might influence saccade adaptation by affecting the SC error signal. In fact, previous studies indicated that the SNr encodes motivation and motivation influences saccade adaptation. In this study, we first established that the SNr projects to the rostral SC, where small error signals are generated, in nonhuman primates. Then, we examined SNr activity while the animal underwent adaptation. SNr neurons paused their activity in association with the error. This pause was shallower and delayed compared with those of no-error trial saccades. The pause at the end of the adaptation was shallower and delayed compared with that at the beginning of the adaptation. The change in the intertrial interval, an indicator of motivation, and adaptation speed had a positive correlation with the changes in the error-related pause. These results suggest that (1) the SNr exhibits a unique activity pattern during the error interval; (2) SNr activity increases during adaptation, consistent with the decrease in SC activity; and (3) motivational decay during the adaptation session might increase SNr activity and influence the adaptation speed.


Assuntos
Parte Reticular da Substância Negra , Animais , Movimentos Sacádicos , Colículos Superiores , Encéfalo , Cerebelo
4.
Res Sq ; 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37398093

RESUMO

Saccade accommodation is a productive model for exploring the role of the cerebellum in behavioral plasticity. In this model, the target is moved during the saccade, gradually inducing a change in the saccade vector as the animal adapts. The climbing fiber pathway from the inferior olive provides a visual error signal generated by the superior colliculus that is believed to be crucial for cerebellar adaptation. However, the primate tecto-olivary pathway has only been explored using large injections of the central portion of the superior colliculus. To provide a more detailed picture, we have made injections of anterograde tracers into various regions of the macaque superior colliculus. As shown previously, large central injections primarily label a dense terminal field within the C subdivision at caudal end of the contralateral medial inferior olive. Several, previously unobserved, sites of sparse terminal labeling were noted: bilaterally in the dorsal cap of Kooy and ipsilaterally in C subdivision of the medial inferior olive. Small, physiologically directed, injections into the rostral, small saccade portion of the superior colliculus produced terminal fields in the same regions of the medial inferior olive, but with decreased density. Small injections of the caudal superior colliculus, where large amplitude gaze changes are encoded, again labeled a terminal field located in the same areas. The lack of a topographic pattern within the main tecto-olivary projection suggests that either the precise vector of the visual error is not transmitted to the vermis, or that encoding of this error is via non-topographic means.

5.
Exp Brain Res ; 241(8): 2145-2162, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37474798

RESUMO

Physiological studies indicate that the central mesencephalic reticular formation (cMRF) plays a role in gaze changes, including control of disjunctive saccades. Neuroanatomical studies have demonstrated strong interconnections with the superior colliculus, along with projections to extraocular motor nuclei, the preganglionic nucleus of Edinger-Westphal, the paramedian pontine reticular formation, nucleus raphe interpositus, medullary reticular formation and cervical spinal cord, as might be expected for a structure that is intimately involved in gaze control. However, the sources of input to this midbrain structure have not been described in detail. In the present study, the brainstem cells of origin supplying the cMRF were labeled by retrograde transport of tracer (wheat germ agglutinin conjugated horseradish peroxidase) in macaque monkeys. Within the diencephalon, labeled neurons were noted in the ventromedial nucleus of the hypothalamus, pregeniculate nucleus and habenula. In the midbrain, labeled cells were found in the substantia nigra pars reticulata, medial pretectal nucleus, superior colliculus, tectal longitudinal column, periaqueductal gray, supraoculomotor area, and contralateral cMRF. In the pons they were located in the paralemniscal zone, parabrachial nucleus, locus coeruleus, nucleus prepositus hypoglossi and the paramedian pontine reticular formation. Finally, in the medulla they were observed in the medullary reticular formation. The fact that this list of input sources is very similar to those of the superior colliculus supports the view that the cMRF represents an important gaze control center.


Assuntos
Macaca , Formação Reticular Mesencefálica , Animais , Tronco Encefálico , Mesencéfalo , Formação Reticular/fisiologia , Peroxidase do Rábano Silvestre
6.
Adv Mater ; 35(22): e2211129, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36800532

RESUMO

The emergence of superconductivity in doped insulators such as cuprates and pnictides coincides with their doping-driven insulator-metal transitions. Above the critical doping threshold, a metallic state sets in at high temperatures, while superconductivity sets in at low temperatures. An unanswered question is whether the formation of Cooper pairsin a well-established metal will inevitably transform the host material into a superconductor, as manifested by a resistance drop. Here, this question is addressed by investigating the electrical transport in nanoscale rings (full loops) and half loops manufactured from heavily boron-doped diamond. It is shown that in contrast to the diamond half-loops (DHLs) exhibiting a metal-superconductor transition, the diamond nanorings (DNRs) demonstrate a sharp resistance increase up to 430% and a giant negative "magnetoresistance" below the superconducting transition temperature of the starting material. The finding of the unconventional giant negative "magnetoresistance", as distinct from existing categories of magnetoresistance, that is, the conventional giant magnetoresistance in magnetic multilayers, the colossal magnetoresistance in perovskites, and the geometric magnetoresistance in semiconductor-metal hybrids, reveals the transformation of the DNRs from metals to bosonic semiconductors upon the formation of Cooper pairs. DNRs like these could be used to manipulate Cooper pairs in superconducting quantum devices.

7.
Brain Struct Funct ; 227(7): 2367-2393, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35871423

RESUMO

Historically, the central mesencephalic reticular formation has been regarded as a purely horizontal gaze center based on the fact that electrical stimulation of this region produces horizontal saccades, it provides monosynaptic input to medial rectus motoneurons, and cells recorded in this region often display a peak in firing when horizontal saccades are made. We tested the proposition that the central mesencephalic reticular formation is purely a horizontal gaze center by examining whether this region also supplies terminals to superior rectus and levator palpebrae superioris motoneurons, both of which fire when making vertical eye movements. The experiments were carried out using dual tracer techniques at the light and electron microscopic level in macaque monkeys. Injections of biotinylated dextran amine or Phaseolus vulgaris leukoagglutinin into the central mesencephalic reticular formation produced anterogradely labeled terminals that were in synaptic contact with superior rectus and levator palpebrae superioris motoneurons that had been retrogradely labeled. These results indicate that this region is not purely connected with horizontal gaze motoneurons. In addition, we found that the number of contacts on vertical gaze motoneurons increased with more rostral injections involving the mesencephalic reticular formation adjacent to the interstitial nucleus of Cajal. This suggests that there is a caudal to rostral gradient for horizontal to vertical saccades, respectively, represented within the midbrain reticular formation. Finally, we utilized post-embedding immunohistochemistry to show that a portion of the labeled terminals were GABAergic, indicating they likely originate from downgaze premotor neurons.


Assuntos
Formação Reticular Mesencefálica , Movimentos Oculares , Neurônios Motores , Músculos Oculomotores , Formação Reticular , Movimentos Sacádicos
8.
Invest Ophthalmol Vis Sci ; 63(1): 35, 2022 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-35084433

RESUMO

Purpose: Under real-world conditions, saccades are often accompanied by changes in vergence angle and lens accommodation that compensate for changes in the distance between the current fixation point and the next target. As the superior colliculus directs saccades, we examined whether it contains premotor neurons that might control lens compensation for target distance. Methods: Rabies virus or recombinant rabies virus was injected into the ciliary bodies of Macaca fascicularis monkeys to label circuits controlling lens accommodation via retrograde transsynaptic transport. In addition, conventional anterograde tracers were used to confirm the rabies findings with respect to projections to preganglionic Edinger-Westphal motoneurons. Results: At time courses that rabies virus labeled lens-related premotor neurons in the supraoculomotor area and central mesencephalic reticular formation, labeled neurons were not found within the superior colliculus. They were, however, found bilaterally in the medial pretectal nucleus continuing caudally into the tectal longitudinal column, which lies on the midline, between the colliculi. A bilateral projection by this area to the preganglionic Edinger-Westphal nucleus was confirmed by anterograde tracing. Only at longer time courses were cells labeled in the superior colliculus. Conclusions: The superior colliculus does not provide premotor input to preganglionic Edinger-Westphal nucleus motoneurons, but may provide input to lens-related premotor populations in the supraoculomotor area and central mesencephalic reticular formation. There is, however, a novel third population of lens-related premotor neurons in the tectal longitudinal column and rostrally adjacent medial pretectal nucleus. The specific function of this premotor population remains to be determined.


Assuntos
Acomodação Ocular/fisiologia , Núcleo de Edinger-Westphal/fisiologia , Animais , Feminino , Macaca fascicularis , Masculino , Modelos Animais , Neurônios Motores/fisiologia , Vias Neurais
9.
J Am Vet Med Assoc ; 259(12): 1407-1409, 2021 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-34757927
10.
iScience ; 24(7): 102818, 2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34355148

RESUMO

To robustly assess the antibacterial mechanisms of nanotopographies, it is critical to analyze the bacteria-nanotopography adhesion interface. Here, we utilize focused ion beam milling combined with scanning electron microscopy to generate three-dimensional reconstructions of Staphylococcus aureus or Escherichia coli interacting with nanotopographies. For the first time, 3D morphometric analysis has been exploited to quantify the intrinsic contact area between each nanostructure and the bacterial envelope, providing an objective framework from which to derive the possible antibacterial mechanisms of synthetic nanotopographies. Surfaces with nanostructure densities between 36 and 58 per µm2 and tip diameters between 27 and 50 nm mediated envelope deformation and penetration, while surfaces with higher nanostructure densities (137 per µm2) induced envelope penetration and mechanical rupture, leading to marked reductions in cell volume due to cytosolic leakage. On nanotopographies with densities of 8 per µm2 and tip diameters greater than 100 nm, bacteria predominantly adhered between nanostructures, resulting in cell impedance.

11.
J Comp Neurol ; 529(14): 3389-3409, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34101199

RESUMO

For normal viewing, the eyes are held open by the tonic actions of the levator palpebrae superioris (levator) muscle raising the upper eyelid. This activity is interrupted during blinks, when the eyelid sweeps down to spread the tear film or protect the cornea. We examined the circuit connecting the principal trigeminal nucleus to the levator motoneurons by use of both anterograde and retrograde tracers in macaque monkeys. Injections of anterograde tracer were made into the principal trigeminal nucleus using either a stereotaxic approach or localization following physiological characterization of trigeminal second order neurons. Anterogradely labeled axonal arbors were located both within the caudal central subdivision, which contains levator motoneurons, and in the adjacent supraoculomotor area. Labeled boutons made synaptic contacts on retrogradely labeled levator motoneurons indicating a monosynaptic connection. As the eye is also retracted through the actions of the rectus muscles during a blink, we examined whether these trigeminal injections labeled boutons contacting rectus motoneurons within the oculomotor nucleus. These were not found when the injection sites were confined to the principal trigeminal nucleus region. To identify the source of the projection to the levator motoneurons, we injected retrograde tracer into the oculomotor complex. Retrogradely labeled cells were confined to a narrow, dorsoventrally oriented cell population that lined the rostral edge of the principal trigeminal nucleus. Presumably these cells inhibit levator motoneurons, while other parts of the trigeminal sensory complex are activating orbicularis oculi motoneurons, when a blink is initiated by sensory stimuli contacting the face.


Assuntos
Piscadela/fisiologia , Pálpebras/inervação , Neurônios Motores/fisiologia , Rede Nervosa/fisiologia , Nervo Trigêmeo/fisiologia , Animais , Pálpebras/fisiologia , Feminino , Macaca fascicularis , Macaca mulatta , Masculino , Nervo Oculomotor/fisiologia , Terminações Pré-Sinápticas/fisiologia , Reflexo , Núcleos do Trigêmeo/fisiologia
12.
Vis Neurosci ; 38: E007, 2021 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-33977889

RESUMO

Since most gaze shifts are to targets that lie at a different distance from the viewer than the current target, gaze changes commonly require a change in the angle between the eyes. As part of this response, lens curvature must also be adjusted with respect to target distance by the ciliary muscle. It has been suggested that projections by the cerebellar fastigial and posterior interposed nuclei to the supraoculomotor area (SOA), which lies immediately dorsal to the oculomotor nucleus and contains near response neurons, support this behavior. However, the SOA also contains motoneurons that supply multiply innervated muscle fibers (MIFs) and the dendrites of levator palpebrae superioris motoneurons. To better determine the targets of the fastigial nucleus in the SOA, we placed an anterograde tracer into this cerebellar nucleus in Macaca fascicularis monkeys and a retrograde tracer into their contralateral medial rectus, superior rectus, and levator palpebrae muscles. We only observed close associations between anterogradely labeled boutons and the dendrites of medial rectus MIF and levator palpebrae motoneurons. However, relatively few of these associations were present, suggesting these are not the main cerebellar targets. In contrast, labeled boutons in SOA, and in the adjacent central mesencephalic reticular formation (cMRF), densely innervated a subpopulation of neurons. Based on their location, these cells may represent premotor near response neurons that supply medial rectus and preganglionic Edinger-Westphal motoneurons. We also identified lens accommodation-related cerebellar afferent neurons via retrograde trans-synaptic transport of the N2c rabies virus from the ciliary muscle. They were found bilaterally in the fastigial and posterior interposed nuclei, in a distribution which mirrored that of neurons retrogradely labeled from the SOA and cMRF. Our results suggest these cerebellar neurons coordinate elements of the near response during symmetric vergence and disjunctive saccades by targeting cMRF and SOA premotor neurons.


Assuntos
Neurônios Motores , Músculos Oculomotores , Animais , Macaca fascicularis , Tegmento Mesencefálico
13.
eNeuro ; 8(2)2021.
Artigo em Inglês | MEDLINE | ID: mdl-33707204

RESUMO

The basal ganglia have long been considered crucial for associative learning, but whether they also are involved in another type of learning, error-based motor learning, is not clear. Error-based learning has been considered the province of the cerebellum. However, learning to use a robotic arm and saccade adaptation, which use error-based learning, are facilitated by motivation, which is a function of the basal ganglia. Additionally, patients with Parkinson's disease, a basal ganglia deficit, show slower saccade adaptation than age matched controls. To further investigate whether the basal ganglia actually influence error-based learning, we reversibly inactivated the oculomotor portion of the substantia nigra pars reticulata (SNr) in two monkeys and tested saccade adaptation. Here, we show that nigral inactivation affected saccade adaptation. In particular, the inactivation facilitated the amplitude decrease adaptation of ipsiversive saccades. Consistent with previous studies, no effect was seen on the amplitude of the ipsiversive saccades when we did not induce adaptation. Therefore, the facilitated adaptation was not caused by inactivation directly modulating ipsiversive saccades. On the other hand, the kinematics of corrective saccades, which represent error processing, were changed after the inactivation. Thus, our data suggest that the oculomotor SNr assists saccade adaptation by strengthening the error signal. This effect indicates the basal ganglia influence error-based motor learning, a previously unrecognized function.


Assuntos
Parte Reticular da Substância Negra , Movimentos Sacádicos , Adaptação Fisiológica , Animais , Movimentos Oculares , Haplorrinos , Humanos , Substância Negra
14.
J Comp Neurol ; 529(11): 2842-2864, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-33598920

RESUMO

The trigeminal blink reflex plays an important role in protecting the corneal surface from damage and preserving visual function in an unpredictable environment. The closing phase of the human reflex, produced by activation of the orbicularis oculi (ObOc) muscles, consists of an initial, small, ipsilateral R1 component, followed by a larger, bilateral R2 component. We investigated the circuitry that underlies this reflex in macaque (Macaca fascicularis and Macaca mulatta) monkeys by the use of single and dual tracer methods. Injection of retrograde tracer into the facial nucleus labeled neurons in the principal trigeminal nucleus, and in the spinal nucleus pars oralis and interpolaris, bilaterally, and in pars caudalis, ipsilaterally. Injection of anterograde tracer into the principal trigeminal nucleus labeled axons that directly terminated on ObOc motoneurons, with an ipsilateral predominance. Injection of anterograde tracer into pars caudalis of the spinal trigeminal nucleus labeled axons that directly terminated on ipsilateral ObOc motoneurons. The observed pattern of labeling indicates that the reticular formation ventromedial to the principal and spinal nuclei also contributes extensive bilateral input to ObOc motoneurons. Thus, much of the trigeminal sensory complex is in a position to supply a monosynaptic drive for lid closure, and the adjacent reticular formation can supply a disynaptic drive. These findings indicate that the assignment of the R1 and R2 components of the blink reflex to different parts of the trigeminal sensory complex cannot be exclusively based on subdivision connectional relationships with facial motoneurons. The characteristics of the R2 component may be due, instead, to other circuit properties.


Assuntos
Piscadela/fisiologia , Neurônios Motores/fisiologia , Rede Nervosa/fisiologia , Núcleo Espinal do Trigêmeo/fisiologia , Animais , Feminino , Macaca fascicularis , Macaca mulatta , Masculino , Neurônios Motores/química , Neurônios Motores/ultraestrutura , Rede Nervosa/química , Rede Nervosa/ultraestrutura , Núcleo Espinal do Trigêmeo/química , Núcleo Espinal do Trigêmeo/ultraestrutura
15.
Vis Neurosci ; 382021.
Artigo em Inglês | MEDLINE | ID: mdl-36438664

RESUMO

A projection by the superior colliculus to the supraoculomotor area (SOA) located dorsal to the oculomotor complex was first described in 1978. This projection's targets have yet to be identified, although the initial study suggested that vertical gaze motoneuron dendrites might receive this input. Defining the tectal targets is complicated by the fact the SOA contains a number of different cell populations. In the present study, we used anterograde tracers to characterize collicular axonal arbors and retrograde tracers to label prospective SOA target populations in macaque monkeys. Close associations were not found with either superior or medial rectus motoneurons whose axons supply singly innervated muscle fibers. S-group motoneurons, which supply superior rectus multiply innervated muscle fibers, appeared to receive a very minor input, but C-group motoneurons, which supply medial rectus multiply innervated muscle fibers, received no input. A number of labeled boutons were observed in close association with SOA neurons projecting to the spinal cord, or the reticular formation in the pons and medulla. These descending output neurons are presumed to be peptidergic cells within the centrally projecting Edinger-Westphal population. It is possible the collicular input provides a signaling function for neurons in this population that serve roles in either stress responses, or in eating and drinking behavior. Finally, a number of close associations were observed between tectal terminals and levator palpebrae superioris motoneurons, suggesting the possibility that the superior colliculus provides a modest direct input for raising the eyelids during upward saccades.

16.
Proc Natl Acad Sci U S A ; 117(46): 29123-29132, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33139553

RESUMO

During normal viewing, we direct our eyes between objects in three-dimensional (3D) space many times a minute. To accurately fixate these objects, which are usually located in different directions and at different distances, we must generate eye movements with appropriate versional and vergence components. These combined saccade-vergence eye movements result in disjunctive saccades with a vergence component that is much faster than that generated during smooth, symmetric vergence eye movements. The neural control of disjunctive saccades is still poorly understood. Recent anatomical studies suggested that the central mesencephalic reticular formation (cMRF), located lateral to the oculomotor nucleus, contains premotor neurons potentially involved in the neural control of these eye movements. We have therefore investigated the role of the cMRF in the control of disjunctive saccades in trained rhesus monkeys. Here, we describe a unique population of cMRF neurons that, during disjunctive saccades, display a burst of spikes that are highly correlated with vergence velocity. Importantly, these neurons show no increase in activity for either conjugate saccades or symmetric vergence. These neurons are termed saccade-vergence burst neurons (SVBNs) to maintain consistency with modeling studies that proposed that such a class of neuron exists to generate the enhanced vergence velocities observed during disjunctive saccades. Our results demonstrate the existence and characteristics of SVBNs whose activity is correlated solely with the vergence component of disjunctive saccades and, based on modeling studies, are critically involved in the generation of the disjunctive saccades required to view objects in our 3D world.


Assuntos
Movimentos Oculares/fisiologia , Neurônios/fisiologia , Movimentos Sacádicos/fisiologia , Visão Binocular/fisiologia , Animais , Macaca mulatta , Masculino , Formação Reticular Mesencefálica/patologia , Visão Ocular
17.
Front Neuroanat ; 14: 562673, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33041774

RESUMO

The ventral posterior medial nucleus (VPM) is amandatory relay for orofacial sensory information targeting the primary somatosensory cortex. We characterized the morphology of VPM axons arising in the principal trigeminal sensory nucleus (pV) through injections of biotinylated dextran amine (BDA) placed in pV of Macaca fascicularis and mulatta monkeys. Labeled terminals formed a patchy bilateral distribution. Within contralateral VPM, patches were found primarily, but not exclusively, within the laterally located, vertical segment, and in ipsilateral VPM, primarily, but not exclusively, in the medially located, horizontal segment. Two fiber types were labeled: thin and thick. Thin fibers were poorly branched and diffusely distributed. They were studded with small en passant boutons. Most labeled fibers were thick and they branched extensively to form distinctive terminal arbors decorated with numerous boutons that varied in size and shape. Quantitative analysis of thick fiber arbor features showed little difference between the sides, although contralateral boutons were significantly larger than ipsilateral ones. Bouton distribution with respect to counterstained somata suggests that proximal dendrites are their main target. Indeed, ultrastructural examination demonstrated that they provide large diameter dendrites with numerous contacts. Direct comparison of thick fiber terminal arbors to cytochrome oxidase (CO) staining revealed that these arbors are much smaller than individual CO-rich patches believed to designate rods containing discrete body area representations. Thus, each terminal arbor appears to heavily innervate a small number of VPM neurons within a rod. This relationship would serve to maintain relatively small receptive fields within the topographic representation of the face.

18.
Invest Ophthalmol Vis Sci ; 61(8): 5, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32634204

RESUMO

Purpose: In frontal-eyed mammals such as primates, eye movements are coordinated so that the lines of sight are directed at targets in a manner that adjusts for target distance. The lens of each eye must also be adjusted with respect to target distance to maintain precise focus. Whether the systems for controlling eye movements are monocularly or binocularly organized is currently a point of contention. We recently determined that the premotor neurons controlling the lens of one eye are bilaterally distributed in the midbrain. In this study, we examine whether this is due to premotor neurons projecting bilaterally to the preganglionic Edinger-Westphal nuclei, or by a mixture of ipsilaterally and contralaterally projecting cells supplying each nucleus. Methods: The ciliary muscles of Macaca fasicularis monkeys were injected with recombinant forms of the N2c rabies virus, one eye with virus that produced a green fluorescent marker and the other eye with a virus that produced a red fluorescent marker. Results: Preganglionic motoneurons in the Edinger-Westphal nucleus displayed the same marker as the ipsilateral injected muscle. Many of the premotor neurons in the supraoculomotor area and central mesencephalic reticular formation were doubly labeled. Others were labeled from either the ipsilateral or contralateral eye. Conclusions: These results suggest that both monocular control and binocular control of lens accommodation are present. Binocular inputs yoke the accommodation in the two eyes. Monocular inputs may allow modification related to differences in each eye's target distance or differences in the capacities of the two ciliary muscles.


Assuntos
Acomodação Ocular/fisiologia , Núcleo de Edinger-Westphal/fisiologia , Movimentos Oculares/fisiologia , Animais , Feminino , Macaca fascicularis , Modelos Animais , Neurônios Motores/fisiologia , Vias Neurais
19.
J Neurosci Methods ; 345: 108859, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32668316

RESUMO

BACKGROUND: Recent genetic technologies such as opto- and chemogenetics allow for the manipulation of brain circuits with unprecedented precision. Most studies employing these techniques have been undertaken in rodents, but a more human-homologous model for studying the brain is the nonhuman primate (NHP). Optimizing viral delivery of transgenes encoding actuator proteins could revolutionize the way we study neuronal circuits in NHPs. NEW METHOD: rAAV2-retro, a popular new capsid variant, produces robust retrograde labeling in rodents. Whether rAAV2-retro's highly efficient retrograde transport would translate to NHPs was unknown. Here, we characterized the anatomical distribution of labeling following injections of rAAV2-retro encoding opsins or DREADDs in the cortico-basal ganglia and oculomotor circuits of rhesus macaques. RESULTS: rAAV2-retro injections in striatum, frontal eye field, and superior colliculus produced local labeling at injection sites and robust retrograde labeling in many afferent regions. In every case, however, a few brain regions with well-established projections to the injected structure lacked retrogradely labeled cells. We also observed robust terminal field labeling in downstream structures. COMPARISON WITH EXISTING METHOD(S): Patterns of labeling were similar to those obtained with traditional tract-tracers, except for some afferent labeling that was noticeably absent. CONCLUSIONS: rAAV2-retro promises to be useful for circuit manipulation via retrograde transduction in NHPs, but caveats were revealed by our findings. Some afferently connected regions lacked retrogradely labeled cells, showed robust axon terminal labeling, or both. This highlights the importance of anatomically characterizing rAAV2-retro's expression in target circuits in NHPs before moving to manipulation studies.


Assuntos
Encéfalo , Neurônios , Animais , Sistema Nervoso Central , Macaca mulatta , Transgenes
20.
Sci Adv ; 6(20): eaaz2536, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32440544

RESUMO

The combination of different exotic properties in materials paves the way for the emergence of their new potential applications. An example is the recently found coexistence of the mutually antagonistic ferromagnetism and superconductivity in hydrogenated boron-doped diamond, which promises to be an attractive system with which to explore unconventional physics. Here, we show the emergence of Yu-Shiba-Rusinov (YSR) bands with a spatial extent of tens of nanometers in ferromagnetic superconducting diamond using scanning tunneling spectroscopy. We demonstrate theoretically how a two-dimensional (2D) spin lattice at the surface of a three-dimensional (3D) superconductor gives rise to the YSR bands and how their density-of-states profile correlates with the spin lattice structure. The established strategy to realize new forms of the coexistence of ferromagnetism and superconductivity opens a way to engineer the unusual electronic states and also to design better-performing superconducting devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...